Optimized Clusters for Disaggregated Electricity Load Forecasting

نویسندگان

  • Michel Misiti
  • Yves Misiti
  • Georges Oppenheim
  • Jean-Michel Poggi
چکیده

• To account for the variation of EDF’s (the French electrical company) portfolio following the liberalization of the electrical market, it is essential to disaggregate the global load curve. The idea is to disaggregate the global signal in such a way that the sum of disaggregated forecasts significantly improves the prediction of the whole global signal. The strategy is to optimize, a preliminary clustering of individual load curves with respect to a predictability index. The optimized clustering procedure is controlled by a forecasting performance via a cross-prediction dissimilarity index. It can be assimilated to a discrete gradient type algorithm. Key-Words: • clustering; disaggregation; forecasting; optimization; wavelets. AMS Subject Classification: • 62P30, 62H30, 62-07, 62M20. 106 Michel Misiti, Yves Misiti, Georges Oppenheim and Jean-Michel Poggi Optimized Clusters for Disaggregated Forecasting 107

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Short-Term Load Forecasting Based on the Analysis of User Electricity Behavior

The smart meter is an important part of the smart grid, and in order to take full advantage of smart meter data, this paper mines the electricity behaviors of smart meter users to improve the accuracy of load forecasting. First, the typical day loads of users are calculated separately according to different date types (ordinary workdays, day before holidays, holidays). Second, the similarity be...

متن کامل

Effect of Demand-Side Management in Electricity Price/Load Forecasting in Smart Grids

Electricity price and load forecasting are two important problems for market participants and independent system operators (ISO) in smart grid environments. Most existing papers predict price and load separately, while, the aggregate reaction of consumers can potentially shift the demand curve in the market, resulting in prices that may differ from the initial forecasts. In this regards, demand...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010